# 引入所需要的库 from sklearn.model_selection import train_test_split from sklearn.linear_model import Lasso from sklearn.preprocessing import MinMaxScaler from sklearn import datasets
# 生成一些随机的回归数据 X, y = datasets.make_regression(n_samples=100, n_features=1, noise=0.1)
# 划分数据为训练集和测试集 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)
# 引入所需要的库 from sklearn.model_selection import train_test_split from sklearn.linear_model import LinearRegression from sklearn.preprocessing import PolynomialFeatures, FunctionTransformer from sklearn.pipeline import FeatureUnion from sklearn import datasets import numpy as np
# 生成一些随机的回归数据 X, y = datasets.make_regression(n_samples=100, n_features=1, noise=0.1, random_state=42)
# 引入所需要的库 from sklearn.model_selection import train_test_split from sklearn.tree import DecisionTreeRegressor from sklearn.preprocessing import MinMaxScaler from sklearn import datasets
# 生成一些随机的回归数据 X, y = datasets.make_regression(n_samples=100, n_features=1, noise=0.1, random_state=42)
# 引入所需要的库 from sklearn.model_selection import train_test_split from sklearn.ensemble import RandomForestRegressor from sklearn.preprocessing import MinMaxScaler from sklearn import datasets
# 生成一些随机的回归数据 X, y = datasets.make_regression(n_samples=100, n_features=1, noise=0.1, random_state=42)
# 引入所需要的库 from sklearn.model_selection import train_test_split from sklearn.ensemble import GradientBoostingRegressor from sklearn.preprocessing import MinMaxScaler from sklearn import datasets
# 生成一些随机的回归数据 X, y = datasets.make_regression(n_samples=100, n_features=1, noise=0.1, random_state=42)
# 引入所需要的库 from sklearn.model_selection import train_test_split from sklearn.svm import SVR from sklearn.preprocessing import MinMaxScaler from sklearn import datasets
# 生成一些随机的回归数据 X, y = datasets.make_regression(n_samples=100, n_features=1, noise=0.1, random_state=42)
# 引入所需要的库 from sklearn.model_selection import train_test_split from sklearn.neighbors import KNeighborsRegressor from sklearn.preprocessing import MinMaxScaler from sklearn import datasets
# 生成一些随机的回归数据 X, y = datasets.make_regression(n_samples=100, n_features=1, noise=0.1, random_state=42)
# 引入所需要的库 from sklearn.model_selection import train_test_split from sklearn.neural_network import MLPRegressor from sklearn.preprocessing import MinMaxScaler from sklearn import datasets
# 生成一些随机的回归数据 X, y = datasets.make_regression(n_samples=100, n_features=1, noise=0.1, random_state=42)